Back
ZJY

ZJY

Solo Development of an AI Platform | Latest Tech Stack Experience

Solo Development of an AI Platform | Latest Tech Stack Experience


title: 'Changelog for 2024' description: 'Changelog for 2024' author: name: 'ZJY' src: '/avatar.jpg' date: '2025-02-10' image: '/blog/tech-hero.png'

⚡️ Solo Development of an AI Platform | Latest Tech Stack Experience

📝 Project Background

Recently, I've been developing a Chat to Code platform, primarily focused on AI-assisted code development. As a solo developer, technology selection is crucial - the right tech stack can multiply development efficiency!

🛠 Core Tech Stack Breakdown

1. Frontend Technology

  • Next.js 14 App Router

    • Server components for faster page loads
    • Integrated API routes, no separate backend needed
    • Route middleware perfect for authentication
    // middleware.ts example
    export function middleware(request: NextRequest) {
      const token = request.cookies.get('token');
      if (!token) {
        return NextResponse.redirect(new URL('/login', request.url));
      }
    }
    
  • Vercel AI SDK

    • Simple streaming response implementation
    • Built-in prompt management
    • Multi-model support (OpenAI, Anthropic, Cohere)
    // AI streaming response example
    const response = await ai.streamComplete({
      messages: messages,
      model: 'gpt-4',
      maxTokens: 2000,
    });
    

2. Data Layer

  • Prisma + PostgreSQL
    • Type safety as the biggest advantage
    • Automatic schema synchronization
    • Excellent query builder experience
    // Prisma query example
    const user = await prisma.user.findUnique({
      where: { email },
      include: { projects: true },
    });
    

3. UI/UX

  • Shadcn UI + Tailwind CSS
    • On-demand component imports, small bundle size
    • Flexible theme customization
    • Simple responsive design
    <Card className="transition-shadow hover:shadow-lg">
      <CardHeader>
        <CardTitle>Project Statistics</CardTitle>
      </CardHeader>
      <CardContent>
        <div className="grid grid-cols-2 gap-4">{/* Stats content */}</div>
      </CardContent>
    </Card>
    

🎯 Practical Experience Sharing

1. AI Implementation Key Points

  • Redis for caching conversation history
  • AI context management
  • Code highlighting and real-time completion
// AI context management example
const context = await redis.lrange(`chat:${chatId}`, 0, -1);
const messages = context.map((msg) => JSON.parse(msg));

2. Performance Optimization Experience

  • next/image for optimized image loading
  • Component-level lazy loading
  • Edge functions for API routes
// Edge function example
export const runtime = 'edge';
export async function GET() {
  // Handle request
}

3. Development Efficiency Tips

  • Using VSCode + GitHub Copilot
  • Husky for commit checks
  • pnpm for dependency management

📊 Real-world Results

  • First paint loading time < 2s
  • AI response latency < 500ms
  • Code completion accuracy > 85%

🔍 Lessons Learned

1. Next.js App Router

  • Mind the distinction between server and client components
  • Careful planning of route caching strategies
  • Attention to dynamic route parameter handling

2. Prisma Usage

  • Watch out for N+1 query problems
  • Remember migrations after model updates
  • Connection pool configuration is crucial

3. AI Integration

  • Handle streaming response error retries
  • Mind token limits
  • Prompt engineering is key

💡 Development Recommendations

  1. Technology Selection

    • Choose mainstream, stable tech stack
    • Prioritize developer experience
    • Consider long-term maintenance costs
  2. Architecture Design

    • Modular design
    • Consider scalability
    • Plan for monitoring integration
  3. Deployment & Operations

    • Use Vercel for automatic deployment
    • Configure error monitoring
    • Implement proper logging

Codofly AI