Solo Development of an AI Platform | Latest Tech Stack Experience
title: 'Changelog for 2024' description: 'Changelog for 2024' author: name: 'ZJY' src: '/avatar.jpg' date: '2025-02-10' image: '/blog/tech-hero.png'
⚡️ Solo Development of an AI Platform | Latest Tech Stack Experience
📝 Project Background
Recently, I've been developing a Chat to Code platform, primarily focused on AI-assisted code development. As a solo developer, technology selection is crucial - the right tech stack can multiply development efficiency!
🛠 Core Tech Stack Breakdown
1. Frontend Technology
-
Next.js 14 App Router
- Server components for faster page loads
- Integrated API routes, no separate backend needed
- Route middleware perfect for authentication
// middleware.ts example export function middleware(request: NextRequest) { const token = request.cookies.get('token'); if (!token) { return NextResponse.redirect(new URL('/login', request.url)); } }
-
Vercel AI SDK
- Simple streaming response implementation
- Built-in prompt management
- Multi-model support (OpenAI, Anthropic, Cohere)
// AI streaming response example const response = await ai.streamComplete({ messages: messages, model: 'gpt-4', maxTokens: 2000, });
2. Data Layer
- Prisma + PostgreSQL
- Type safety as the biggest advantage
- Automatic schema synchronization
- Excellent query builder experience
// Prisma query example const user = await prisma.user.findUnique({ where: { email }, include: { projects: true }, });
3. UI/UX
- Shadcn UI + Tailwind CSS
- On-demand component imports, small bundle size
- Flexible theme customization
- Simple responsive design
<Card className="transition-shadow hover:shadow-lg"> <CardHeader> <CardTitle>Project Statistics</CardTitle> </CardHeader> <CardContent> <div className="grid grid-cols-2 gap-4">{/* Stats content */}</div> </CardContent> </Card>
🎯 Practical Experience Sharing
1. AI Implementation Key Points
- Redis for caching conversation history
- AI context management
- Code highlighting and real-time completion
// AI context management example
const context = await redis.lrange(`chat:${chatId}`, 0, -1);
const messages = context.map((msg) => JSON.parse(msg));
2. Performance Optimization Experience
- next/image for optimized image loading
- Component-level lazy loading
- Edge functions for API routes
// Edge function example
export const runtime = 'edge';
export async function GET() {
// Handle request
}
3. Development Efficiency Tips
- Using VSCode + GitHub Copilot
- Husky for commit checks
- pnpm for dependency management
📊 Real-world Results
- First paint loading time < 2s
- AI response latency < 500ms
- Code completion accuracy > 85%
🔍 Lessons Learned
1. Next.js App Router
- Mind the distinction between server and client components
- Careful planning of route caching strategies
- Attention to dynamic route parameter handling
2. Prisma Usage
- Watch out for N+1 query problems
- Remember migrations after model updates
- Connection pool configuration is crucial
3. AI Integration
- Handle streaming response error retries
- Mind token limits
- Prompt engineering is key
💡 Development Recommendations
-
Technology Selection
- Choose mainstream, stable tech stack
- Prioritize developer experience
- Consider long-term maintenance costs
-
Architecture Design
- Modular design
- Consider scalability
- Plan for monitoring integration
-
Deployment & Operations
- Use Vercel for automatic deployment
- Configure error monitoring
- Implement proper logging